
1

Masoud, Jayakrishnan

A decomposition Algorithm to solve the multi-hop peer-to-peer 1

ride-matching problem 2

 3

 4

Neda Masoud 5
Ph.D. Candidate 6

Department of Civil and Environmental Engineering and 7

Institute of Transportation Studies 8

University of California, Irvine 9

Irvine, CA, USA, 92697 10

nmasoud@uci.edu 11

 12

R. Jayakrishnan 13
Professor 14

Department of Civil and Environmental Engineering and 15

Institute of Transportation Studies 16

University of California, Irvine 17

Irvine, CA, USA, 92697 18

rjayakri@uci.edu 19

 20

 21

 22

Revision Submitted: July 31, 2014 23

Word Count: 5550 24

Tables and Figures: 3 Table + 2 Figures = 1750 words 25

Total Word Count: 7,300 26

 27

To be considered for Presentation in the 94th TRB Annual Meeting only 28

 29

2

Masoud, Jayakrishnan

ABSTRACT 1
In this paper, we present a formulation of the multi-hop many-to-many Peer-to-Peer ride-2

matching problem, found in shared-ride applications. A many-to-many problem is one in which a 3

rider can travel with multiple drivers, and a driver can carry multiple riders. We propose a pre-4

processing procedure to reduce the size of the problem. Furthermore, we devise a decomposition 5

algorithm to solve the original ride-matching problem to optimality by means of solving multiple 6

smaller problems. Finally, we demonstrate the computational efficiency of the proposed 7

algorithm by solving randomly generated instances of the problem. 8

3

Masoud, Jayakrishnan

INTRODUCTION AND LITERATURE REVIEW 1
Recent advances in communications technology coupled with the increasing 2

environmental concerns, road congestion, and the high cost of vehicle ownership has directed 3

more attention to the opportunity cost of empty seats travelling throughout the transportation 4

networks every day. Peer-to-peer (P2P) ridesharing is a good way of using the existing capacity 5

on the roads to address the increasing demand for transportation. 6

Figure 1 shows the average vehicle occupancy in the US in 2010 by trip purpose. The 7

fact that out of an average of 4 seats available in a vehicle only 1.7 is being actually used, 8

suggests a great potential for ridesharing. This potential was recognized by the US congress in 9

June 2012. The section 1501 of the Moving Ahead for Progress in the 21st Century (MAP-21) 10

transportation act expanded the definition of “carpooling” to include “real-time ridesharing” as 11

well, making ridesharing eligible for all the federal funding that was previously available only 12

for carpooling projects. 13

FIGURE 1 Average vehicle occupancy1 in the US in 2009 for different trip purposes

Source of data: 2009 National Household Travel Survey (NHTS)

 14

In this paper, we define P2P real-time ridesharing to include all one-time rideshares with 15

any type of arrangement, on the fly or pre-arranged, between peer drivers and riders. The term 16

“real-time” emphasizes the capability of the system to make ride-matches in real time. The 17

system finds matches for riders by optimally routing drivers in the network. We define a set of 18

stations in the network where riders can start and end their trips, or switch between vehicles. 19

A P2P ride-matching algorithm is central to a ridesharing system. A ride-matching 20

problem is a problem of matching riders and drivers in a ridesharing system. If a rider is matched 21

in the system, he/she receives an itinerary of his/her trip including the information on the 22

scheduled route, and drivers to ride with. Drivers receive itineraries that include the schedules to 23

pick up and drop off riders. Following the terminology from (1), we call these itineraries route 24

plans2. 25

The P2P ride-matching problem has attracted attention in academia only in the very 26

recent years. Table 1 presents some of the attempts made to formulate the P2P ride-matching 27

problem and/or propose algorithms to solve it. In this table, we have listed some of the 28

characteristics of a flexible ridesharing system, and reviewed and assessed the literature based on 29

these criteria. This summary suggests that the previous attempts each lack at least one key 30

component that could potentially increase the number of successful matches made in the system. 31

1 NHTS defines vehicle occupancy as person miles of travel per vehicle mile
2 (1) uses route plan only to refer to the riders’ itinerary

0 0.5 1 1.5 2 2.5

Home to work

Shopping

Other family or personal business

social and recreatinal

All purpose

Vehicle Occupancy

4

Masoud, Jayakrishnan

Some formulations and algorithms that assume a fixed route for each driver miss the 1

potential matches that could be made by having the system assign routes to drivers. Of course, 2

considering fixed routes for drivers can substantially decrease the computational complexity of 3

the problem, but such savings come at the cost of losing potential matches and thus better system 4

efficiency. 5

Most of the current work in the literature does not consider multi-hop routes for riders. 6

Multi-hop routes are routes in which riders can switch between drivers. A multi-hop P2P 7

ridesharing system comes in handy especially when P2P ridesharing systems are integrated with 8

transit. A multi-hop system can improve the number of riders’ requests that can be satisfied, but 9

increases the complexity of the problem. 10

There are formulations that solve the ride-matching problem for one rider at a time. 11

These formulations are inadequate, since once a ride-matching problem is solved for a rider, the 12

routes of drivers that construct the rider’s route plan are fixed, and this translates into the 13

opportunity cost for subsequent riders. 14

Finally, none of the proposed algorithms finds an optimal solution to the ride-matching 15

problem, and the proposed mixed integer programming problems (MIP), which have the 16

potential to reach optimal solutions, typically do not consider a time limit for reaching the 17

solution, thus making the formulations to not necessarily be compatible with the requirements of 18

real-time systems. 19

In this paper, we propose an MIP formulation of the P2P ride-matching problem that 20

contains all the above components. In addition, to ensure that rides can be successfully 21

accomplished, time-dependent travel time matrices are used in this study. Furthermore, the 22

proposed formulation gives drivers the possibility of visiting each station multiple times, if 23

necessary. 24

In the rest of the paper, we first introduce the ridesharing system to provide the context in 25

which we need to solve the ride-matching problem. The rest of the paper focuses on formulating 26

and solving the ride-matching problem. We start by formulating the P2P ride-matching problem. 27

Since solving this problem directly is computationally expensive, we introduce a pre-processing 28

procedure to limit the size of the problem, and a decomposition algorithm to help solve the 29

problem more efficiently. Finally we talk about the scalability of the problem and its application 30

in real-time. 31

TABLE 1 Summary of the Previous Work on the Ride-Matching Problem 32

Author Year
Fixed
Paths

Multi-
hop

Multiple
Riders

Formulation
Optimal
Solution

Ghoseiri (2) 2012 Y3 Y Y
Optimization with
heuristic solution

N

Herbawi and Weber (1) 2011 Y Y N
genetic and

evolutionary algorithms
N

Febbraro et al. (3) 2013 N N Y Optimization Y

Agatz et al. (4) 2009 N Y N Optimization Y

Herbawi and Weber (5) 2012 N N Y
Optimization with
heuristic solution

N

3 Allows for short detours, but drivers have to follow the pre-determined set of nodes.

5

Masoud, Jayakrishnan

RIDESHARING SYSTEM 1

The ridesharing system defined in this paper contains a set of participants 𝑃 who are 2

willing to provide or receive rides in the (near or distant) future. These participants are divided 3

into a set of riders, 𝑅, who are looking for a ride, and a set of drivers, 𝐷, who are willing to 4

provide rides in return for monetary compensation, or for any other ridesharing incentives such 5

as using HOV lanes, etc. 6

To facilitate pick-ups and drop-offs, a set of stations,𝑆, are identified in the network. 7

Stations in the ridesharing system described in this paper are pre-specified locations where riders 8

can start their trip, end it, or switch between drivers and/or to and from the transit system. 9

Strategic identification of stations is central to the performance of the system. Lessons learnt 10

from the previous P2P ridesharing systems suggest that it is better for riders to be picked 11

up/dropped off at pre-specified stations, than their homes (or the exact location where their trips 12

start/end) for two reasons (6). First, these locations could be hard to find for drivers, and 13

therefore people might miss their rides. In addition, drivers could have a hard time finding an 14

appropriate location to park their vehicles. Second, some drivers and riders would 15

understandably be reluctant to reveal their home address to others. 16

All participants when having a ride-share request input into the system their origin and 17

destination stations (𝑂𝑆𝑝 and 𝐷𝑆𝑝 respectively), the earliest time they are willing to depart from 18

their origin station, 𝑇𝑝
𝐸𝐷, the latest time they have to arrive at their destination 𝑇𝑝

𝐿𝐴, and the 19

maximum trip length they can afford 𝑇𝑝
𝑇𝐿. The travel time window for each participant is defined 20

as 𝑇𝑊𝑝 = [𝑇𝑝
𝐸𝐷 𝑇𝑝

𝐿𝐴]. 21

Each driver should also determine the capacity of his/her vehicle, 𝐶𝑑. This could simply 22

be the physical capacity of the vehicle, or the maximum number of riders the driver is willing to 23

carry in his/her vehicle at each instant in time. Each rider can specify the maximum number of 24

connections (change of vehicles), 𝑉𝑟, he/she is willing to take to get to his/her destination (Note 25

that the term “connection” used here is essentially identical in nature to the term “transfer” used 26

in the public transit context. We use these terms interchangeably). 27

We discretize the study time horizon into short time periods, Δ𝑡, to allow for using time-28

dependent travel-time matrices in the system. We keep the set of time periods for each 29

participant 𝑝 in set 𝑇𝑝. 𝑇𝑝 contains all the time periods within the range 𝑇𝑊𝑝 = [𝑇𝑝
𝐸𝐷 𝑇𝑝

𝐿𝐴]. 30

In a system discretized in both time and space, we define a node 𝑖, 𝑛𝑖, as a tuple (𝑡𝑖, 𝑠𝑖), 31

where 𝑡𝑖 is the time period one can arrive at/leave 𝑠𝑖. Subsequently, a link, 𝑙, is defined as 32

(𝑛𝑖 , 𝑛𝑗) = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗 , 𝑠𝑗), where 𝑡𝑖 is the time period one has to leave 𝑠𝑖, in order to arrive at 𝑠𝑗 at 33

time period 𝑡𝑗. 34

The goal of the ridesharing system is to match riders with drivers. For now, let’s assume 35

that drivers leave the route choice to the system. This does not preclude the case of drivers who 36

want to follow their own fixed routes, as those routes can be specified as successive nodes and 37

entered into the formulation as fixed parameters. 38

Each rider has to provide a deadline by which he/she needs to be informed of any 39

matches made for him/her in the system. A few minutes before this deadline, a ride-matching 40

problem is solved for the rider. This problem includes a closed system of participants, such that 41

the travel time window of no participants outside of the system intersects with the travel time 42

window of any participant inside the system, and the travel time window of all participants inside 43

the system intersects with the travel time window of at least one other participant inside the 44

system. Riders and drivers inside this system are kept in sets 𝑅𝑟 and 𝐷𝑟 respectively. If there are 45

6

Masoud, Jayakrishnan

drivers in set 𝐷𝑟 who are previously matched in the system, but still have empty seats in their 1

vehicles, they are added to the problem with fixed routes. The paths of the drivers who have not 2

yet been matched with any riders will be determined by the ride-matching problem. 3

We include a dummy driver, 𝑑𝑑𝑢𝑚𝑚𝑦, to the set of drivers, and form the set 𝐷𝑟
′ = 𝐷𝑟 ∪4

𝑑𝑑𝑢𝑚𝑚𝑦. The dummy driver doesn’t have a real origin or destination, nor a travel time window. 5

The motivation behind introducing the dummy driver will be explained in the following section. 6

PEER-TO-PEER RIDE-MATCHING PROBLEM 7
The objective of the ride-matching problem is to devise route plans that can take riders to 8

their destinations by optimally routing drivers. Route plans have to comply with their specified 9

maximum number of transfers, and the capacity of drivers’ vehicles. The ride-matching problem 10

will devise route plans for the matched riders in the system, and all drivers, matched or not. 11

The mathematical formulation of the ride-matching problem contains four set of decision 12

variables defined in (1)-(4). 13

𝑋𝑙
𝑑 = {

1 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 14

𝑋𝑙
𝑟𝑑 = {

1 𝑟𝑖𝑑𝑒𝑟 𝑟 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑙𝑖𝑛𝑘 𝑙 𝑤𝑖𝑡ℎ 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 15

𝑌𝑟 = {
1 𝑟𝑖𝑑𝑒𝑟 𝑟 𝑖𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑
0 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒

 (3) 16

𝑈𝑟
𝑑 = {

1 𝑑𝑟𝑖𝑣𝑒𝑟 𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒 𝑝𝑙𝑎𝑛 𝑓𝑜𝑟 𝑟𝑖𝑑𝑒𝑟 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 17

The system of constraints that define the ride-matching problem is presented in (5.2)-18

(5.18). Constraints (5.2)-(5.4) route drivers in the system. (5.2) direct drivers in the set 𝐷𝑟 out of 19

their origin stations, and (5.3) ensure that they end up in their destination stations. (5.4) is the 20

balancing constraint, enforcing that a driver who enters a station in a time period, exits the 21

station in the same time period. Notice that participants might not physically leave a station. 22

Members of set 𝐿 in the form (𝑡𝑖, 𝑠, 𝑡𝑖 + Δ𝑡, 𝑠) represent the situations where a participant is 23

staying at station 𝑠 for one time period. 24

Rider 𝑟’s route plan is determined by the variable 𝑋𝑙
𝑟𝑑. A value of 1 for this variable 25

indicates that the rider has travelled on link 𝑙 in driver 𝑑’s vehicle. By definition, this variable 26

implies that a rider should always be accompanied by a driver. However, in reality a rider 27

doesn’t need to be accompanied when he/she is taking a link in the form (𝑡𝑖, 𝑠, 𝑡𝑖 + Δ𝑡, 𝑠), i.e. 28

lingering at a station, either to start a trip, end it, or make a transfer. To incorporate this element 29

into the math problem, the dummy driver has been introduced into the formulation. As 30

mentioned before, the dummy driver does not have a real origin or destination in the network. 31

The set of links for the dummy driver is also different from the set 𝐿 used by the participants. We 32

define the set of links for the dummy driver as 𝐿𝑑𝑑𝑢𝑚𝑚𝑦
= {(𝑡𝑖, 𝑠, 𝑡𝑖 + Δ𝑡, 𝑠), ∀𝑡𝑖 ∈ 𝑇, ∀𝑠 ∈ 𝑆}. 33

This set includes all the links that indicate staying at a station for one time period. Constraints 34

(5.5) ensure that 𝑋𝑙

𝑑𝑑𝑢𝑚𝑚𝑦 = 1, ∀𝑙 ∈ 𝐿𝑑𝑢𝑚𝑚𝑦, so that these links can be used by riders whenever 35

necessary. (5.6) limit the total travel time by each driver. 36

Constraints (5.7)-(5.9) route riders in the system, and are analogous to (5.2)-(5.4), except 37

for a small variation. While drivers, matched or not, will receive a route plan from the system, 38

this is not the case for the riders. Only riders who are matched in the system will receive route 39

plans. This difference between routing of riders and drivers is reflected in the formulation by 40

7

Masoud, Jayakrishnan

replacing 1 on the right hand side of constraints (5.2)-(5.3) by 𝑌𝑟 in (5.7)-(5.8). (5.10) set a limit 1

on the total travel time by each rider. 2

Constraints (5.11) ensure that riders are accompanied by drivers throughout their trips. 3

Notice that this constraint set precludes the links in which 𝑠𝑖 = 𝑠𝑗. This type of links are taken 4

care of in (5.5) by the dummy driver. 5

(5.12) set limits on the capacity of vehicles. (5.13) register drivers who collectively 6

construct each rider’s route plan (refer to proposition 1). (5.14) restrict the number of transfers 7

by each rider (refer to proposition 2). 8

(5.15)-(5.18) determine the type of the decision variables. While 𝑋𝑙
𝑑 and 𝑈𝑑

𝑟 are binary 9

variables, the binary condition can be relaxed for 𝑋𝑙
𝑟𝑑 and 𝑌𝑟 (proposition 3). 10

(5.1) shows the objective function of the problem. The ride-matching problem can have 11

different objectives, ranging from maximizing profits to minimizing the total miles/hours 12

travelled in the system. This objective can vary depending on the type of the agency (public or 13

private), and the level of acceptance of the system in the community. For a ridesharing system at 14

its infancy, it sounds logical to try to maximize the number of satisfied rides in the system, and at 15

the same time minimize the number of transfers to make the riders as comfortable as possible. 16

We use this objective for the ridesharing system in this paper. The first term in (5.1) minimizes 17

the total number of connections in the system, and the second term maximizes the total number 18

of served riders. The relative importance of each term can be set using weights in the objective 19

function. Here, we set the weight for the number of satisfied riders dependent on the rider IDs. 20

Riders whose departure times are farther away should have lower weights, since they might have 21

other opportunities as drivers keep joining the system. 22

 23

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊𝑇 ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟
𝑑∈𝐷𝑟

− 𝑊𝑠
𝑟 ∑ 𝑌𝑟

𝑟∈𝑅𝑟

(5.1)

 ∑ 𝑋𝑙

𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑑

− ∑ 𝑋𝑙

𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑑

 = 1
∀𝑑 ∈ 𝐷𝑟 (5.2)

 ∑ 𝑋𝑙

𝑙∈𝐿
𝑠𝑗=𝐷𝑆𝑑

 = 1
∀𝑑 ∈ 𝐷𝑟 (5.3)

∑ 𝑋𝑙
𝑑

𝑡𝑖,𝑠𝑖:

𝑙=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿

 = ∑ 𝑋𝑙
𝑑

𝑡𝑗,𝑠𝑗:

𝑙=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿

 ∀𝑑 ∈ 𝐷𝑟

 ∀𝑡 ∈ 𝑇𝑑,
 ∀𝑠 ∈ 𝑆 − {𝑂𝑆𝑑, 𝐷𝑆𝑑}

(5.4)

 𝑋𝑙

𝑑𝑑𝑢𝑚𝑚𝑦 = 1 ∀𝑙 ∈ 𝐿𝑑𝑑𝑢𝑚𝑚𝑦
 (5.5)

 ∑(𝑡𝑗 − 𝑡𝑖)𝑋𝑙
𝑑

𝑙∈𝐿

≤ 𝑇𝑝
𝑇𝐿 ∀𝑑 ∈ 𝐷𝑟 (5.6)

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿:
𝑠𝑖=𝑂𝑆𝑟

𝑑∈𝐷𝑟
′

− ∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿:
𝑠𝑗=𝑂𝑆𝑟

𝑑∈𝐷𝑟
′

= 𝑌𝑟
∀𝑟 ∈ 𝑅𝑟 (5.7)

8

Masoud, Jayakrishnan

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿:
𝑠𝑗=𝐷𝑆𝑟

𝑑∈𝐷𝑟
′

= 𝑌𝑟
∀𝑟 ∈ 𝑅𝑟 (5.8)

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑡𝑖,𝑠𝑖:

𝑙=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿
𝑑∈𝐷𝑟

′

= ∑ ∑ 𝑋𝑙
𝑟𝑑

𝑡𝑗,𝑠𝑗:

𝑙=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿

𝑑∈𝐷𝑟
′

 ∀𝑟 ∈ 𝑅𝑟 , ∀𝑡 ∈ 𝑇𝑟 ,
 ∀𝑠 ∈ 𝑆 − {𝑂𝑆𝑟 , 𝐷𝑆𝑟}

(5.9)

∑ ∑(𝑡𝑗 − 𝑡𝑖)𝑋𝑙
𝑟𝑑

𝑙∈𝐿𝑑∈𝐷𝑟
′

≤ 𝑇𝑝
𝑇𝐿 ∀𝑟 ∈ 𝑅𝑟 (5.10)

𝑋𝑙
𝑟𝑑 ≤ 𝑋𝑙

𝑑
∀𝑟 ∈ 𝑅𝑟 , ∀𝑑 ∈ 𝐷𝑟 ,
∀𝑙 ∈ 𝐿: 𝑠𝑖 ≠ 𝑠𝑗

(5.11)

∑ 𝑋𝑙
𝑟𝑑

𝑟∈𝑅𝑟

≤ 𝐶𝑑 𝑋𝑙
𝑑 ∀𝑑 ∈ 𝐷𝑑 ,

∀𝑙 ∈ 𝐿
(5.12)

𝑈𝑟
𝑑 ≥ 𝑋𝑙

𝑟𝑑
∀𝑟 ∈ 𝑅𝑟 , ∀𝑑 ∈ 𝐷𝑟 ,
∀𝑙 ∈ 𝐿

(5.13)

∑ 𝑈𝑟
𝑑 − 1 ≤ 𝑉𝑟

𝑑∈𝐷𝑟

 ∀𝑟 ∈ 𝑅𝑟 (5.14)

𝑋𝑙
𝑑 ∈ {0,1}

∀𝑑 ∈ 𝐷𝑑 ,
∀𝑙 ∈ 𝐿𝑑

(5.15)

0 ≤ 𝑋𝑙
𝑟𝑑 ≤ 1

∀𝑟 ∈ 𝑅𝑟 , ∀𝑑 ∈ 𝐷𝑟 ,
∀𝑙 ∈ 𝐿𝑟𝑑

(5.16)

𝑈𝑟
𝑑 ∈ {0,1}

∀𝑟 ∈ 𝑅𝑟 , ∀𝑑 ∈ 𝐷𝑟

(5.17)

0 ≤ 𝑌𝑟 ≤ 1 ∀𝑟 ∈ 𝑅𝑟 (5.18)

 1

Solving the optimization problem in (5) is computationally prohibitive even for small 2

instances of the problem. Therefore, in its original form, the ride-matching problem in (5) is not 3

appropriate for real-time applications. In the next section, we introduce a pre-processing 4

procedure that limits the input to the optimization problem. Next, we propose a disaggregation 5

algorithm that attempts to solve the original ride-matching problem by means of solving multiple 6

smaller problems. 7

PRE-PROCESSING PROCEDURE 8
The goal of the pre-processing procedure is to limit the number of links accessible by 9

each participant, and hence the input to the mixed integer ride-matching problem. As a reminder, 10

we present a link, 𝑙, as a 4-tuple (𝑡i, 𝑠i, 𝑡j, 𝑠j). Each participant can potentially reach any station in 11

the network at any time period, making the size of the set of links, 𝐿, as large as 𝑂(|𝑇|2|𝑆|2), 12

where |𝑇| is the number of time periods in the study time horizon, and |𝑆| is the number of 13

stations in the network. 14

9

Masoud, Jayakrishnan

It is evident that in most cases participants won’t have access to all members of set 𝐿, due 1

to the spatiotemporal constraints enforced by their origin and destination stations, maximum 2

acceptable travel times, and travel time windows. We use this information to construct the set of 3

links accessible to riders and drivers, designated by 𝐿𝑟 and 𝐿𝑑 respectively. 4

The origin and destination stations, maximum acceptable travel times, and travel time 5

windows of participants can be used to define a region in the network in the form of an ellipse, 6

inside which participants have a higher degree of space proximity, i.e. the percentage of 7

accessible stations within this region is at least as high as the same percentage within the entire 8

network. We call the region inside and on the circumference of the ellipse associated with 9

participant 𝑝 the reduced graph of the participant, denoted by 𝐺𝑝.The focal points of the ellipse 10

are the participant’s origin and destination stations. The length of the major axes between the 11

focal points is the straight distance between the origin and destination stations, and the transverse 12

diameter of the ellipse is an upper-bound on the distance that can be travelled by the participant 13

in 𝑇𝑝
𝑇𝐿 time units, during the participant’s time window. 14

After the reduced graphs are identified, we use the following algorithm to construct sets 15

𝐿𝑟 and 𝐿𝑑 . The algorithm finds the set of links in two steps: a forward movement followed by a 16

backward movement. In the forward movement, the algorithm starts with the origin station, 17

assuming that the participant can leave this station in time intervals within the window 18

[𝑇𝑝
𝐸𝐷 𝑇𝑝

𝐿𝐴 − 𝑡𝑡𝑂𝑆𝑝,𝐷𝑆𝑝
], where 𝑡𝑡𝑂𝑆𝑝,𝐷𝑆𝑝

 is the shortest path travel time between the origin and 19

destination stations of participant 𝑝. 𝑡𝑡𝑂𝑆𝑝,𝐷𝑆𝑝
 is calculated based on the static travel time matrix 20

𝑇𝑠𝑡𝑎𝑡𝑖𝑐. To ensure no feasible links are cut off, 𝑇𝑠𝑡𝑎𝑡𝑖𝑐 should contain an underestimation of the 21

link travel times, say for example the travel times during non-peak hours. 22

After identifying the set of feasible time periods for the origin station, outgoing links 23

from the origin station whose end nodes are inside the reduced graph are identified. The set of 24

time periods for these stations is determined based on the set of time periods for the origin 25

station and the time-dependent travel times on the links. The same procedure repeats until the 26

destination station is reached. Figure 2 demonstrates an example of the forward movement for a 27

participant who is travelling from station 14 to station 8, with 𝑇𝑊𝑝 = [1 40] (in minutes), travel 28

time budget of 40 minutes, and shortest path travel time of 37 minutes. The time periods are 29

assumed to be 1 minute each. Links travel times (in minutes) are shown on the links of the graph. 30

It is assumed that the travel time remains constant on each link. Note that this assumption is 31

made only for simplicity, and using time-dependent travel times would be straightforward, as the 32

formulation already has a multiple period structure. The set of time periods within which each 33

station is accessible is computed during the forward movement, and presented in the figure. 34

These time periods are not final, however, and have to be refined using the backward movement. 35

The backward movement simply scans through the table created by the forward 36

movement and refines it by removing some of the time intervals. In the example shown in Figure 37

2, since the latest arrival time is at Δ𝑡 = 40, time periods 40 and 41 should be removed from the 38

set of time periods for the destination station. Tracking back the stations from the destination to 39

the origin, time periods for the other stations that has led to the excessive time periods at the 40

destination station are removed. In the example in Figure 2, after completing the backward 41

movement, the set of links, 𝐿𝑝, are derived and listed in the figure. 42

The last step of the pre-processing procedure is to find the drivers who have 43

spatiotemporal proximity to each rider. This can be accomplished for each rider 𝑟 by comparing 44

members of the set 𝐿𝑟 with members of the sets 𝐿𝑑 , ∀𝑑 ∈ 𝐷𝑟: (𝑇𝑊𝑟 ∩ 𝑇𝑊𝑑) = ∅. For each driver 45

10

Masoud, Jayakrishnan

𝑑, if 𝐿𝑟 ∩ 𝐿𝑑 ≠ ∅, tuple (𝑟, 𝑑) will be added to the set 𝑀. In addition, a set 𝐿𝑟𝑑 will be 1

constructed containing all the links in 𝐿𝑟 ∩ 𝐿𝑑. Furthermore, we add tuples (𝑟, 𝑑𝑑𝑢𝑚𝑚𝑦), ∀𝑟 ∈ 𝑅𝑟 2

to set 𝑀, and set 𝐿𝑟𝑑𝑑𝑢𝑚𝑚𝑦
= 𝐿𝑑𝑑𝑢𝑚𝑚𝑦

, ∀𝑟 ∈ 𝑅𝑟. 3

 4

 Forward Movement
Station Pred. Time Intervals

14 - 1,2,3

15 14 11,12,13

10 14 8,9,10

11 15 20,21,22

11 10 21,22,23

12 11 28,29,30,31

8 12 30,40,41,42

 Backward Movement
Station Pred. Time Intervals

8 12 39,40

12 11 28,29

11 10 21

11 15 20

10 14 8

15 14 11

14 - 1

𝐿𝑝 = {(1,14,11,15), (1,14,8,10), (11,15,20,11), (8,10,21,11), (20,11,28,12),
(20,11, ,21,11), (21,11,29,12), (28,12,39,8), (39,8,40,8), (29,12,40,8)}

FIGURE 2 An example of a forward and backward movement for a participant

with 𝑶𝑺𝒑 = 𝟏𝟒, 𝑫𝑺𝒑 = 𝟑, 𝚫𝒕 = 𝟏 𝒎𝒊𝒏, 𝑻𝑾𝒑 = [𝟏 𝟒𝟎] 𝒎𝒊𝒏, and 𝑻𝒑
𝑻𝑳 = 𝟒𝟎 𝒎𝒊𝒏

DECOMPOSITION ALGORITHM 5
The decomposition algorithm described in this section attempts to solve the original 6

problem by solving a number of sub-problems that are easier to solve. The flowchart of this 7

algorithm is displayed in Figure 3. The basic idea is that in each iteration the algorithm solves a 8

number of sub-problems that can represent the entire system. If the solutions to the sub-problems 9

do not have any conflicts, the algorithm is terminated and the combination of solutions to the 10

sub-problems can give the global optimal for the original problem. Each sub-problem includes a 11

number of riders kept in the set 𝑅𝑟𝑠, and a number of drivers kept in the set 𝐷𝑟𝑠 =12
{∀𝑑|𝑟 ∈ 𝑅𝑟𝑠 ∩ (𝑟, 𝑑) ∈ 𝑀}. We identify sub-problems by the set of riders in the sub-problem. 13

The algorithm starts by solving 𝑅𝑟 sub-problems, each including one of the riders in the 14

set 𝑅𝑟, and all the drivers 𝑑 such that (𝑟, 𝑑) ∈ 𝑀. In the case of there being no conflicts between 15

the solutions, the solution to the original problem is readily available. This happens if each rider 16

11

Masoud, Jayakrishnan

is matched with a different driver, or if multiple riders are matched with the same driver and the 1

driver is capable of performing all pick-up and drop-off assignments for the assigned riders. 2

In each iteration, in the case of there being conflicts between solutions of the sub-3

problems in the previous iteration, we form the “applicable” sub-problems. An “applicable” sub-4

problem includes: (i) a group of riders from the last iteration’s sub-problems with identical driver 5

assignment (if assignments conflict in time or space), and (ii) sub-problems in the previous 6

iterations from which riders are detached (with the remaining set of riders). For example, assume 7

that at some iteration we have two sub-problems {𝑟1, 𝑟2} and {𝑟3, 𝑟4}. The solutions to these sub-8

problems are {𝑟1: 𝑑1, 𝑟2: 𝑑2} and {𝑟3: 𝑑1,𝑟4: 𝑑3}. Here 𝑑1 is assigned to both 𝑟1 and 𝑟3 but through 9

different routes. Therefore, these two riders form a new sub-problem {𝑟1, 𝑟3}. Since the two 10

previous sub-problems have each lost a rider, they have to form new sub-problems as well, 11

because the solution to them might not be optimal anymore. Hence in the new iteration we have 12

3 sub-problems: {𝑟1, 𝑟3}, {𝑟2}, and {𝑟4}. However, not all these sub-problems have to be actually 13

solved, as we will see later. 14

After the new applicable sub-problems are formed, first we have to check for the loops 15

between iterations. For example, consider the case where the first iteration includes the {𝑟1, 𝑟2} 16

sub-problem, the second iteration includes the {𝑟2, 𝑟3} sub-problem, and the following iteration 17

includes the {𝑟1, 𝑟2} sub-problem again. If we keep proceeding, we will be caught in a loop. To 18

come out of this loop, we form an “intermediate” sub-problem. The “intermediate” sub-problem 19

combines the sub-problems involved in the loop. In the example above the intermediate sub-20

problem is {𝑟1, 𝑟2, 𝑟3}. 21

After all the new sub-problems are determined, a decision has to be made on whether the 22

sub-problems need to be solved or not. Sub-problems that need to be solved are called “active” 23

sub-problems. These sub-problems are the ones whose optimal solutions cannot be readily 24

obtained from the previous solutions. For example, assume that we have a sub-problem {𝑟1, 𝑟2}. 25

From the initialization of the algorithm, we know that matches {𝑟1: 𝑑1} and {𝑟2: 𝑑2} are optimal. 26

Since the separate solutions for these riders don’t have any conflicts, we can readily conclude 27

that the solution to the sub-problem is {𝑟1: 𝑑1, 𝑟2: 𝑑2}. So {𝑟1, 𝑟2} is not an active sub-problem. 28

Note that while using this disaggregation algorithm, a large problem could be solved in 29

the first iteration, or we might end up solving multiple problems before having to solve the 30

original problem in the last iteration. The main merit of this algorithm is that sub-problems 31

during each iteration can be solved in parallel. 32

12

Masoud, Jayakrishnan

FIGURE 3 The disaggregated problems algorithm

ILLUSTRATIVE EXAMPLE 1
Assume that a ridesharing system has 6 riders and 4 drivers, and all drivers have 2

spatiotemporal proximity with all riders. The iterations of the disaggregated algorithm used to 3

match the participants are displayed in Table 2. The active sub-problems during each iteration 4

are displayed in blue. The problems whose solutions won’t change throughout the entire 5

decomposition algorithm are displayed in green. 6

In iteration 1, each rider constitutes an active sub-problem. The solutions show that riders 7

1, 3 and 6 all have driver 1 in their solution, but in conflicting paths. Therefore, an active sub-8

problem of {𝑟1, 𝑟3, 𝑟6} is formed and solved in the second iteration. Also, since rider 2 was not 9

able to find any matches even without the competition from other riders, he will not be able to 10

find a match in the current configuration of the system. Sub-problems 𝑟2 and 𝑟5 are not active 11

sup-problems and their solutions are readily available. 12

The solution to the active sub-problem {𝑟1, 𝑟3, 𝑟6} in iteration 2 shows that the optimal 13

matches for riders 5 and 6 are in conflict (they are both matched with driver 2, but through 14

different paths). So they form the sub-problem {𝑟5, 𝑟6}. Also, since rider 6 was removed from the 15

sub-problem {𝑟1, 𝑟3, 𝑟6}, the solution obtained for this sub-problem for riders 1 and 3 might not 16

be optimal anymore. Therefore, a new sub-problem {𝑟1, 𝑟3} is formed. However, not both these 17

sub-problems are active. The optimal match for rider 5 is driver 2, and the optimal match for 18

rider 6 is driver 1. Since these two don’t have any conflicts, the solution to the {𝑟5, 𝑟6} sub-19

problem is readily available. 20

13

Masoud, Jayakrishnan

The only active sub-problem in iteration 3 is {𝑟1, 𝑟3}. The solution to this sub-problem 1

suggests that two new sub-problems {𝑟1, 𝑟3, 𝑟6} and {𝑟5} need to be formed, which along with 2

two sub-problems {𝑟4} and {𝑟2} should constitute the set of sub-problems for iteration 4. 3

However, we had the exact same set of sub-problems iteration 2. Therefore, in order to avoid 4

getting caught in a loop, a new (intermediate) sub-problem {𝑟1, 𝑟3, 𝑟6, 𝑟5} is formed in iteration 4. 5

After solving this sub-problem, there are no more conflicts. So the global solution to the original 6

problem is obtained in iteration 4. A total of 9 sub-problems had to be solved for this solution to 7

be obtained. However, in iteration 1, all the 6 active sub-problems could be solved 8

simultaneously. 9

TABLE 2 Iterations of the Disaggregation Algorithm 10

Iteration 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

1 𝑑1 - 𝑑1, 𝑑2 𝑑3 𝑑2 𝑑1

Iteration 𝑟1 𝑟3 𝑟6 𝑟2 𝑟4 𝑟5

2 𝑑1 𝑑1, 𝑑4 𝑑2 - 𝑑3 𝑑2

Iteration 𝑟1 𝑟3 𝑟6 𝑟5 𝑟2 𝑟4

3 𝑑1 𝑑1, 𝑑4 𝑑1 𝑑2 - 𝑑3

Iteration 𝑟1 𝑟3 𝑟6 𝑟5 𝑟2 𝑟4

4 𝑑1 𝑑1, 𝑑4 𝑑1 𝑑2 - 𝑑3

 11

It is possible to solve another version of the algorithm which is easier to implement, but 12

may take longer to solve. In this simplified version, if any two riders in two sub-problems have 13

conflicts, the entire sub-problems are combined in the following iteration. This will lead to 14

potentially fewer number of iterations, but larger sub-problems to be solved in each iteration. 15

This algorithm is applied to the example above. Here, after solving the active sub-problem 16

{𝑟1, 𝑟3, 𝑟6} in iteration 2, and studying the solutions to all sub-problems, it turns out that rider 6 17

and rider 5 are both matched with driver 2, but through conflicting paths. Therefore, in the next 18

iteration the two sub-problems {𝑟1, 𝑟3, 𝑟6} and {𝑟5} are combined. In this particular example using 19

the simplified version of the algorithm leads to reaching the optimal solution in fewer number of 20

iterations, and less amount of time, since we are skipping iteration 3 in table 4. However, this is 21

not a typical behavior of this algorithm. 22

TABLE 3 Iterations of the Simplified Disaggregation Algorithm 23

Iteration 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6

1 𝑑1 - 𝑑1, 𝑑2 𝑑3 𝑑2 𝑑1

Iteration 𝑟1 𝑟3 𝑟6 𝑟2 𝑟4 𝑟5

2 𝑑1 𝑑1, 𝑑4 𝑑2 - 𝑑3 𝑑2

Iteration 𝑟1 𝑟3 𝑟6 𝑟5 𝑟2 𝑟4

3 𝑑1 𝑑1, 𝑑4 𝑑1 𝑑2 - 𝑑3

REVISED VERSION of THE P2P RIDE-MATCHING PROBLEM 24
After performing the pre-processing procedure, each sub-problem in the decomposition 25

algorithm can be solved using the system of equations (6). The problem is very similar to the 26

problem in (5), with two main differences: (i) sets in (6) are more refined owing to both the pre-27

14

Masoud, Jayakrishnan

processing procedure and the decomposition algorithm. (ii) Constraints (5.6) and (5.10) are now 1

redundant, since the requirement to not exceed the maximum trip length is met while forming the 2

reduced graphs and performing the forward and backward movements in the pre-processing 3

procedure. 4

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊𝑇 ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟𝑠

𝑑:(𝑟,𝑑)∈𝑀

− 𝑊𝑠
𝑟 ∑ 𝑌𝑟

𝑟∈𝑅𝑟𝑠

(6.1)

∑ 𝑋𝑙

𝑙∈𝐿𝑑:
𝑠𝑖=𝑂𝑆𝑑

− ∑ 𝑋𝑙

𝑙∈𝐿𝑑:
𝑠𝑗=𝑂𝑆𝑑

= 1
∀𝑑 ∈ 𝐷𝑟𝑠 (6.2)

∑ 𝑋𝑙

𝑙∈𝐿𝑑
𝑠𝑗=𝐷𝑆𝑑

= 1
∀𝑑 ∈ 𝐷𝑟𝑠 (6.3)

∑ 𝑋𝑙
𝑑

𝑡𝑖,𝑠𝑖:

𝑙=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑑

= ∑ 𝑋𝑙
𝑑

𝑡𝑗,𝑠𝑗:

𝑙=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿𝑑

 ∀𝑑 ∈ 𝐷𝑟𝑠

 ∀𝑡 ∈ 𝑇𝑑,
 ∀𝑠 ∈ 𝐺𝑑 − {𝑂𝑆𝑑, 𝐷𝑆𝑑}

(6.4)

𝑋𝑙

𝑑𝑑𝑢𝑚𝑚𝑦 = 1 ∀𝑙 ∈ 𝐿𝑑𝑑𝑢𝑚𝑚𝑦
 (6.5)

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿𝑟𝑑:
𝑠𝑖=𝑂𝑆𝑟

𝑑∈𝐷𝑟𝑠
′ :

(𝑟,𝑑)∈𝑀

− ∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿𝑟𝑑:
𝑠𝑗=𝑂𝑆𝑟

𝑑∈𝐷𝑟𝑠
′ :

(𝑟,𝑑)∈𝑀

= 𝑌𝑟
∀𝑟 ∈ 𝑅𝑟𝑠 (6.6)

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑙∈𝐿𝑟𝑑:
𝑠𝑗=𝐷𝑆𝑟

𝑑∈𝐷𝑟𝑠
′ :

(𝑟,𝑑)∈𝑀

= 𝑌𝑟
∀𝑟 ∈ 𝑅𝑟𝑠 (6.7)

∑ ∑ 𝑋𝑙
𝑟𝑑

𝑡𝑖,𝑠𝑖:

𝑙=(𝑡𝑖,𝑠𝑖,𝑡,𝑠)∈𝐿𝑟𝑑

𝑑∈𝐷𝑟𝑠
′ :

(𝑟,𝑑)∈𝑀

= ∑ ∑ 𝑋𝑙
𝑟𝑑

𝑡𝑗,𝑠𝑗:

𝑙=(𝑡,𝑠,𝑡𝑗,𝑠𝑗)∈𝐿𝑟𝑑

𝑑∈𝐷𝑟𝑠
′

 ∀𝑟 ∈ 𝑅𝑟 , ∀𝑡 ∈ 𝑇𝑟 ,
 ∀𝑠 ∈ 𝐺𝑟 − {𝑂𝑆𝑟 , 𝐷𝑆𝑟}

(6.8)

𝑋𝑙
𝑟𝑑 ≤ 𝑋𝑙

𝑑

∀(𝑟, 𝑑) ∈ 𝑀

∀𝑙 ∈ 𝐿𝑟𝑑: 𝑠𝑖 ≠
𝑠𝑗

(6.9)

∑ 𝑋𝑙
𝑟𝑑

𝑟∈𝑅𝑟𝑠:
(𝑟,𝑑)∈𝑀,𝑙∈𝐿𝑟𝑑

≤ 𝐶𝑑 𝑋𝑙
𝑑 ∀𝑑 ∈ 𝐷𝑑𝑠,

∀𝑙 ∈ 𝐿𝑑
(6.10)

𝑈𝑟
𝑑 ≥ 𝑋𝑙

𝑟𝑑
∀(𝑟, 𝑑) ∈ 𝑀

∀𝑙 ∈ 𝐿𝑟𝑑
(6.11)

∑ 𝑈𝑟
𝑑 − 1 ≤ 𝑉𝑟

𝑑∈𝐷𝑟𝑠:
(𝑟,𝑑)∈𝑀

∀𝑟 ∈ 𝑅𝑟𝑠 (6.12)

𝑋𝑙
𝑑 ∈ {0,1}

∀𝑑 ∈ 𝐷𝑑𝑠,
∀𝑙 ∈ 𝐿𝑑

(6.13)

15

Masoud, Jayakrishnan

0 ≤ 𝑋𝑙
𝑟𝑑 ≤ 1

∀(𝑟, 𝑑) ∈ 𝑀
∀𝑙 ∈ 𝐿𝑟𝑑

(6.14)

𝑈𝑟
𝑑 ∈ {0,1} ∀(𝑟, 𝑑) ∈ 𝑀 (6.15)

0 ≤ 𝑌𝑟 ≤ 1 ∀𝑟 ∈ 𝑅𝑟𝑠

 1

To evaluate the performance of the proposed decomposition algorithm, we solved 2

multiple random instances of the ride-matching problem in a randomly-generated grid network 3

with 81 stations, with and without the decomposition algorithm. The number of participants |𝑃| 4

in the generated problems varied between 60 and 300, and the number of riders |𝑅| between 1 5

and |𝑃| − 10. The numerical tests were performed on a PC with Core i7 3 GHz and 8GB of 6

RAM. 7

 We took the logarithm of the solution times in base 10, and plotted the solution time 8

contour lines in Figure 4. The logarithms are shown simply to display numbers that are easier to 9

see in the contour plots. As an example, for a case of about 175 participants, with about 50 10

riders, the left-side plot indicates a 2,5 which is 102.5 = 316 seconds of computation time. The 11

same case shows 1.5 on the right-side plot (101.5= 31.6) indicating a 10-fold benefit in 12

computational time. The two plots quite clearly and succinctly show that solution time savings in 13

obtained by the decomposition algorithm are in order of 10. In addition, no branch and bounds 14

were required to solve any of the problem instances. 15

4(A) Log In Base 10 of Solution Times Using the

MILP Formulation

4(b) Log In Base 10 of Solution Times Using the

Decomposition Algorithm

FIGURE 4 Comparing Solution Times of Problem Instances With and Without the Decomposition

Algorithm

16

Masoud, Jayakrishnan

In addition to the relative savings in computational times, it is also important to look at the actual 1

computation times. As described above, the solution time under the decomposition scheme was 2

a mere 30 seconds to solve a fairly decent sized and realistic ride-matching problem of nearly 3

175 drivers and 50 riders in an 81 node network. 4

The problem can be further decomposed in rolling-horizon solution schemes in real time 5

as well, when for instance 100 or 200 participants are added to an existing system every few 6

minutes and a solution is found within a time period of the order of 10s of seconds with current 7

computational capabilities, which makes the algorithm useful, with appropriate modifications 8

even for systems of 1000s for vehicles. Thus, subject to further studies on implementation 9

aspects which are beyond the scope of this paper, the algorithm shows excellent promise for the 10

ride-matching problems of several different types of real-time ride share systems that are 11

currently emerging. 12

One important point to keep in mind is that the solutions rendered by the decomposition 13

algorithm are optimal, i.e. the same solutions obtained from the MILP formulation of the 14

problem. 15

Conclusion 16
In this paper, we proposed a mixed integer linear optimization problem for the P2P ride-17

matching problem. Despite the fact that the formulation is a mixed integer problem, the structure 18

of the formulation limits the necessity for branching only to very specific cases. In addition, 19

although in the formulation presented in this paper we used a very specific objective function, 20

the decision variables used in the formulation allow for implementing a wide variety of objective 21

functions. 22

We devised algorithms to improve the solution time of the problem, maintaining the 23

optimality of the solutions. The computational savings due to these algorithms are considerable, 24

and make the formulation more suitable for real-time applications. 25

REFERENCES 26

(1) Herbawi, W., and M. Weber. Comparison of Multiobjective Evolutionary Algorithm for 27

Solving The Multiobjective Route Planning in Dynamic Multi-hop Ridesharing. Proceedings 28

of the 11th European conference on Evolutionary computation in combinatorial optimization, 29

Torino, Italy, 2011, pp. 84-95. 30

(2) Ghoseiri, K. DYNAMIC RIDESHARE OPTIMIZED MATCHING PROBLEM, Dissertation 31

at University of Maryland, 2013. 32

(3) Di Febbraro, A., E. Gattorna, and N. Sacco. Optimizing Dynamic Ride-Sharing Systems. 33

Presented in the TRB 2013 annual meeting. 2013. 34

(4) Agatz, N., A. Erera, M. Savelsbergh, and X. Wang. Sustainable Passenger Transportation: 35

Dynamic Ride-Sharing. ERIM Report Series Reference No. ERS-2010-010-LIS. Available at 36

SSRN: http://ssrn.com/abstract=1568676, 2009. 37

http://ssrn.com/abstract=1568676

17

Masoud, Jayakrishnan

(5) Herbawi, W., and M. Weber. A genetic and insertion heuristic algorithm for solving the 1

dynamic ridematching problem with time windows. In Proceedings of the fourteenth 2

international conference on Genetic and evolutionary computation conference (GECCO '12), 3

Terence Soule (Ed.). ACM, New York, NY, USA, 2012. 4

(6) Heinrich, S. Implementing Real-time Ridesharing in the San Francisco Bay Area. Masters of 5

Science thesis, San Jose State University, 2010. 6

 7

Proposition 1. (5.13) registers all drivers who collectively construct each rider’s route plan. 8

Proof. From (5.13) we have 𝑈𝑟
𝑑 ≥ 𝑋𝑙

𝑟𝑑. If 𝑋𝑙
𝑟𝑑 = 1, 𝑈𝑟

𝑑 is forced to be 1. If 𝑋𝑙
𝑟𝑑 = 0, 𝑈𝑟

𝑑 can 9

take either 0 or 1. The term ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟
𝑑∈𝐷𝑟

 in the objective function, ensures that 𝑈𝑟
𝑑 takes the value 10

of 0. 11

 12

Proposition 2. Number of connections for rider 𝑟 can be calculated using term ∑ 𝑈𝑟
𝑑 − 1𝑑∈𝐷𝑟

. 13

Proof. If driver 𝑑 carries rider 𝑟 on any link, then 𝑈𝑟
𝑑=1. So ∑ 𝑈𝑟

𝑑 − 1𝑑∈𝐷𝑟
 can give the number 14

of connections, only if a driver doesn’t pick up a rider multiple times. Without loss of generality, 15

we use the example in Figure P.1 to show by contradiction that such a situation cannot happen. 16

Figure P.1 shows a rider’s route plan. On the first and third link, the rider is traveling 17

with 𝑑1, and on the second link, he/she is travelling with 𝑑2. If 𝑑1 travels on both 𝑙1 and 𝑙3, at 18

some point 𝑑1 must have gone from node 2 to node 3, and the rider could have accompanied 19

him on that ride too, reducing the number of connections from 2 to 0. The term ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟
𝑑∈𝐷𝑟

 in the 20

minimization objective function ensures that the route with zero connections is selected as the 21

optimal solution. 22

FIGURE P.1 an undesirable match

Proposition 3. Let 𝑋𝑙
𝑑 ∈ {0,1}, 𝑈𝑟

𝑑 ∈ {0,1}, 𝑋𝑙
𝑟𝑑 ∈ [0 1], 𝑌𝑟 ∈ [0 1] be the decision variables 23

satisfying the constraint set (5.2)-(5.18), and minimizing the objective function (5.1). All 24

variables have binary values in the optimal solution. 25

Proof. Let 𝑋𝑙
𝑑 ∈ {0,1}. Two cases can arise from constraint (5.11), 𝑋𝑙

𝑟𝑑 ≤ 𝑋𝑙
𝑑: 26

Case 1. 𝑋𝑙
𝑑 = 0. From (5.11), 𝑋𝑙

𝑟𝑑 ≤ 0, and hence 𝑋𝑙
𝑟𝑑 is forced to be zero. 27

Case 2. 𝑋𝑙
𝑑 = 1. From (5.11), 𝑋𝑙

𝑟𝑑 ≤ 1. Let us assume 𝑋𝑙
𝑟𝑑 = 𝑓 where 𝑓 is a fractional 28

number. Since 𝑋𝑙
𝑟𝑑 holds a positive value, from (5.7)-(5.9) there exists a route plan or rider 𝑟, 29

and link 𝑙 and driver 𝑑 construct part of this route plan. Rider’s balance constraint (5.8) makes 30

sure that all the 𝑋𝑙
𝑟𝑑 variables on the rider’s path hold a positive value (not necessarily 𝑓). 31

(5.7)/(5.9) ensure that 𝑌𝑟 holds a positive value as well. On the other hand, the minimization 32

objective function includes the term 𝑌𝑟 with a negative sign, i.e. the objective function forces the 33

solution to take the highest possible value of 𝑌𝑟, which is 1. 34

𝒅𝟏 𝒅𝟐
𝒏𝟏 𝒏𝟐 𝒏𝟑 𝒏𝟒

𝒅𝟏

𝒍𝟏 𝒍𝟐 𝒍𝟑

18

Masoud, Jayakrishnan

It is possible, however, for the system of constraints to find multiple paths for one rider, 1

allocating each one a fraction of a trip, such that sum of fractions end up to be 1. Such solutions 2

will not be optimal, because of the term ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟
𝑑∈𝐷𝑟

 in the objective function. Multiple paths for a 3

rider translates into strictly higher values for ∑ 𝑈𝑟
𝑑

𝑟∈𝑅𝑟
𝑑∈𝐷𝑟

. The same line of reasoning applies to the 4

case of multiple riders, each with a fractional 𝑌𝑟 value. 5

To conclude, in case there exists at least one route plan for a rider, the problem finds the 6

one with the least number of transfers, and reaches optimality at 𝑌𝑟 = 1, and constraints (57)-7

(5.9) ensure that all 𝑋𝑙
𝑟𝑑s on the optimal route plan take the value of 1 as well. In case there is not 8

such a path, these constraints along with (5.11) will set all the value of 𝑋𝑙
𝑟𝑑 , ∀𝑑: (𝑟, 𝑑) ∈ 𝑀, ∀𝑙 ∈9

𝐿𝑟𝑑 and 𝑌𝑟 to zero. 10

